Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970560 | PMC |
http://dx.doi.org/10.3390/gels10030206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!