Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent in sunscreen formulations. EHMC has been found to potentially contribute to health complications as a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of poly(ethylene glycol dimethacrylate) (pEDGMA), was synthesized using interfacial polymerization with the aim of reducing the irritation and penetration of EHMC. The thermogravimetric analysis (TGA) indicated that the EHMC content accounted for 75.72% of the total composition. Additionally, the scanning electron microscopy (SEM) images depicted the microgel as exhibiting a spherical morphology. In this study, the loading of EHMC was demonstrated through FTIR and contact angle tests. The UV resistance, penetration, and skin irritation of the EHMC-pEDGMA microgel were additionally assessed. The investigation revealed that the novel sunscreen compound, characterized by limited dermal absorption, had no irritant effects and offered sufficient protection against ultraviolet radiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970645 | PMC |
http://dx.doi.org/10.3390/gels10030177 | DOI Listing |
Bioeng Transl Med
January 2025
Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Inner Mongolia University, Daxue West Road, 010021, Hohhot, CHINA.
Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
The dielectric properties of polymers play a pivotal role in the development of advanced materials for energy storage, electronics, and insulation. This review comprehensively explores the critical relationship between polymer chain conformation, nanostructure, and dielectric properties, focusing on parameters such as dielectric constant, dielectric loss, and dielectric breakdown strength. It highlights how factors like chain rigidity, free volume, molecular alignment, and interfacial effects significantly influence dielectric performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Polydimethylsiloxane (PDMS) is extensively employed in applications ranging from flexible electronics to microfluidics due to its elasticity, transparency, and biocompatibility. However, enhancing interfacial adhesion and tensile properties remains a challenge for applications demanding high mechanical stability. To this end, this study introduced a novel bonding technique using crosslinkers as adhesive layers to improve the mechanical performance of PDMS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!