A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Diagnostic Images to Improve the Performance of the Segment Anything Model in Medical Image Segmentation. | LitMetric

AI Article Synopsis

  • Medical imaging is essential for cancer diagnosis but often suffers from quality issues to reduce patient risks.
  • Advances in computer-aided diagnosis systems use algorithms to enhance the accuracy and consistency of radiological interpretations.
  • The study proposes a new image-enhancement scheme that combines standard and medical image processing to improve medical image quality, leading to better performance in image segmentation algorithms.

Article Abstract

Medical imaging serves as a crucial tool in current cancer diagnosis. However, the quality of medical images is often compromised to minimize the potential risks associated with patient image acquisition. Computer-aided diagnosis systems have made significant advancements in recent years. These systems utilize computer algorithms to identify abnormal features in medical images, assisting radiologists in improving diagnostic accuracy and achieving consistency in image and disease interpretation. Importantly, the quality of medical images, as the target data, determines the achievable level of performance by artificial intelligence algorithms. However, the pixel value range of medical images differs from that of the digital images typically processed via artificial intelligence algorithms, and blindly incorporating such data for training can result in suboptimal algorithm performance. In this study, we propose a medical image-enhancement scheme that integrates generic digital image processing and medical image processing modules. This scheme aims to enhance medical image data by endowing them with high-contrast and smooth characteristics. We conducted experimental testing to demonstrate the effectiveness of this scheme in improving the performance of a medical image segmentation algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967980PMC
http://dx.doi.org/10.3390/bioengineering11030270DOI Listing

Publication Analysis

Top Keywords

medical image
16
medical images
16
medical
10
image segmentation
8
quality medical
8
artificial intelligence
8
intelligence algorithms
8
image processing
8
image
7
images
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!