Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques. Furthermore, for specimens tested up to failure, their fractured surfaces were analyzed through Scanning Electron Microscopy (SEM) to clearly outline fracture modes. Additionally, the internal structure of 3D-printed PEKK was explored through Computed Tomography (CT) imaging, providing a three-dimensional view of the internal structure and the presence of voids and other imperfections. Finally, surface morphology was analyzed through confocal microscopy. The multiscale approach adopted in the present work offers information about the global and local behavior of the PEKK, also assessing its material properties down to the nanoscale. Due to its novelty as a polymeric material, no previous studies have approached a multiscale analysis of 3D-printed PEKK. The findings of this study contribute to a comprehensive understanding of 3D-printed PEKK along with criteria for process optimization in order to customize its properties to meet specific application requirements. This research not only advances the knowledge of PEKK as a 3D-printing material but also provides insights into the multifaceted nature of multiscale material characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968480PMC
http://dx.doi.org/10.3390/bioengineering11030244DOI Listing

Publication Analysis

Top Keywords

3d-printed pekk
20
pekk
9
mechanical behavior
8
behavior 3d-printed
8
multiscale approach
8
internal structure
8
multiscale
5
mechanical
5
properties
5
3d-printed
5

Similar Publications

Objective: Customized nonabsorbable membranes are widely used in severe alveolar bone defects and provide sufficient and precise regenerated bone tissue for subsequent dental implant placement. Although 3D-printed polyetheretherketone (PEEK) meshes have confirmed successful use in clinical cases, the performance of a PEEK mesh is not satisfactory. Compared with PEEK, polyetherketoneketone (PEKK) has better mechanical and processing properties.

View Article and Find Full Text PDF

Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques.

View Article and Find Full Text PDF

Polymer materials are increasingly widely used in high-fire-risk applications, such as aviation interior components. This study aimed to compare the tensile, thermal, and flame-retardant properties of test samples made from ultra-performance materials, polyetherimide (PEI) and polyetherketoneketone (PEKK), using the fused filament fabrication process (FFF). The tensile tests were performed for these materials at different raster angles (0, 45, and 90°).

View Article and Find Full Text PDF

Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK).

J Mech Behav Biomed Mater

September 2023

Implant Research Center, Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA.

In this study, the Taguchi method was utilized to optimize fused filament fabrication (FFF) additive manufacturing with the goal of maximizing the flexural strength of 3D printed polyaryletherketone specimens. We analyzed 3D printed (3DP) carbon fiber reinforced poly-etherketoneketone (CFR PEKK), 3D printed and pressed (3DP + P) CFR PEKK, and injection molded medical grade polyetheretherketone (PEEK) as a control. Fracture surfaces were analyzed via scanning electron microscopy (SEM).

View Article and Find Full Text PDF

3D printed PEKK bone analogs with internal porosity and surface modification for mandibular reconstruction: An in vivo rabbit model study.

Biomater Adv

August 2023

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China; Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou 310023, China. Electronic address:

Polyetheretherketone (PEEK) and its derivative polyetherketoneketone (PEKK) have been used as implant materials for spinal fusing and enjoyed their success for many years because of their mechanical properties similar to bone and their chemical inertness. The osseointegration of PEEKs is datable. Our strategy was to use custom-designed and 3D printed bone analogs with an optimized structure design and a modified PEKK surface to augment bone regeneration for mandibular reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!