Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency. Here, we present deep learning (DL) methodologies for predicting and classifying early mesoderm cells differentiated from embryoid bodies (EBs) based on cellular and nuclear morphologies. Using a transgenic murine embryonic stem cell (mESC) line, namely OGTR1, we validated the upregulation of mesodermal genes ( (): DsRed) in cells derived from EBs for the deep learning model training. Cells were classified into mesodermal and non-mesodermal (representing endo- and ectoderm) classes using a convolutional neural network (CNN) model called InceptionV3 which achieved a very high classification accuracy of 97% for phase images and 90% for nuclei images. In addition, we also performed image segmentation using an Attention U-Net CNN and obtained a mean intersection over union of 61% and 69% for phase-contrast and nuclear images, respectively. This work highlights the potential of integrating cell culture, imaging technologies, and deep learning methodologies in identifying lineage specification, thus contributing to the advancements in regenerative medicine. Collectively, our trained deep learning models can predict the mesoderm cells with high accuracy based on cellular and nuclear morphologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969030 | PMC |
http://dx.doi.org/10.3390/cells13060534 | DOI Listing |
The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFSci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!