Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in .

Microbiol Spectr

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.

Published: May 2024

Unlabelled: Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in . In this study, a comparative transcriptomics analysis between a ∆ mutant and the wild-type (WT) strain of was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium . There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆ mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in .

Importance: Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in . The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of was emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064496PMC
http://dx.doi.org/10.1128/spectrum.03756-23DOI Listing

Publication Analysis

Top Keywords

stress resistance
16
zur
13
biofilm formation
12
zur zinc
12
uptake regulator
12
environmental adaptation
12
metal homeostasis
8
homeostasis motility
8
formation stress
8
zinc uptake
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AIMST University, Bedong, Kedah, Malaysia.

Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.

View Article and Find Full Text PDF

Background: Cognitive impairment, a common aging-related pathology, is a risk factor for dementia. Echinacoside (ECH), derived from the traditional Chinese medicine Cistanche deserticola, shows anti-aging properties including anti-inflammation, oxidative stress reduction, and neuronal protection. Despite its benefits, the beneficial impact of ECH on age-related cognitive decline remains unclear.

View Article and Find Full Text PDF

Background: Homozygosity for the rare APOE3-Christchurch (APOE3Ch) variant, encoding for apoE3-R136S (apoE3-Ch), was linked to resistance against an aggressive form of familial Alzheimer's disease (AD). Carrying two copies of APOE3Ch was sufficient to delay autosomal AD onset by 30 years. This remarkable protective effect makes it a strong candidate for uncovering new therapies against AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia. Although AD is characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), it's estimated that nearly half of AD cases might be attributed to modifiable risk factors and lifestyle-based interventions may offer promising preventative strategies to delay disease onset and progression. Polyphenolic derivatives easily found in foods like luteolin and curcumin have shown beneficial effects to counteract cognitive decline.

View Article and Find Full Text PDF

Copper homeostasis; A rapier between mycobacteria and macrophages.

FASEB Bioadv

January 2025

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan Guangdong China.

Copper is a vital trace element crucial for mediating interactions between and macrophages. Within these immune cells, copper modulates oxidative stress responses and signaling pathways, enhancing macrophage immune functions and facilitating clearance. Conversely, copper may promote escape from macrophages through various mechanisms: inhibiting macrophage activity, diminishing phagocytic and bactericidal capacities, and supporting survival and proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!