Electric cars are desirable for their environmental and economic benefits yet face limitations in range in cold weather due to the increased energy demands for cabin heating. To provide efficient heating for vehicles, flexible composite electrothermal heaters offer a viable solution owing to their lightweight design, efficiency, and adaptability for use within and beyond vehicle interiors. The current study aims to improve electrothermal heater stability and performance by understanding the impact of the polymer structure on composite properties. We explore how the presence and molecular structure of olefinic bonds within the polyisoprene block of styrenic triblock copolymers affect thermal stability and performance. Composite electrothermal heaters were fabricated by dispersing carbon black (CB) as the heating material in three triblock copolymer matrices, poly(styrene-1,4-isoprene-styrene) (1,4-SIS), poly(styrene-3,4-isoprene-styrene) (3,4-SIS), and its hydrogenated version poly(styrene-ethylene-propylene-styrene) (SEPS). The chemical structure and thermal properties of each copolymer were linked to electrothermal performance measurements of composite heaters to establish structure-function relationships. Notably, 3,4-SIS with 28 wt % CB demonstrated the highest thermal and electrical conductivity, resulting in uniform heat distribution. The outcomes unambiguously demonstrate that the olefinic structure of SIS copolymers enhances the electric and thermal conductivity, leading to enhanced electrothermal performance of prototype heaters compared to that of the hydrogenated copolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c19541 | DOI Listing |
Sci Rep
November 2024
ROSEAL SA, 5A Nicolae Bălcescu, Odorheiu Secuiesc, 535600, Romania.
The study presents the chemiluminescence based (CL) evaluation of the recyclability of linear styrene block copolymers. This analysis can provide insight into the material's degradation state and predict its suitability for further recycling cycles, helping to avoid unnecessary energy consumption during processing.The thermal stability of four similar copolymer structures - styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS) copolymers with different styrene/butadiene ratios, and styrene-ethylene-butadiene-styrene (SEBS) - was studied using isothermal and non-isothermal chemiluminescence (CL).
View Article and Find Full Text PDFAAPS PharmSciTech
October 2024
Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan.
Understanding the relationship between the release characteristics of the active ingredient in the tape formulation and the pharmaceutical characteristics of the adhesive layer can optimize therapeutic efficacy and improve patient adherence. This study aimed to clarify the effect of liquid paraffine (LP)/styrene-isoprene-styrene (SIS) triblock copolymer ratio on pressure-sensitive adhesive (PSA) formulation properties, such as adhesive properties and drug release, with a certain amount of diclofenac sodium (DFS) and tackifier. The effects of changes in PSA composition in DFS-containing tape formulations on adhesive and drug release properties were evaluated.
View Article and Find Full Text PDFSci Technol Adv Mater
September 2024
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan.
Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene--isoprene--styrene) blends under tension.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide--glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
High Entropy Alloys (HEAs) are a versatile material with unique properties, tailored for various applications. They enable pH-sensitive electrocatalytic transformations like hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR) in alkaline media. Mesoporous nanostructures with high surface area are preferred for these electrochemical reactions, but designing mesoporous HEA sis challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!