The rapid growth of electric vehicle use is expected to cause a significant environmental problem in the next few years due to the large number of spent lithium-ion batteries (LIBs). Recycling spent LIBs will not only alleviate the environmental problems but also address the challenge of limited natural resources shortages. While several hydro- and pyrometallurgical processes are developed for recycling different components of spent batteries, direct regeneration presents clear environmental, and economic advantages. The principle of the direct regeneration approach is restoring the electrochemical performance by healing the defective structure of the spent materials. Thus, the development of direct regeneration technology largely depends on the formation mechanism of defects in spent LIBs. This review systematically details the degradation mechanisms and types of defects found in diverse cathode materials, graphite anodes, and current collectors during the battery's lifecycle. Building on this understanding, principles and methodologies for directly rejuvenating materials within spent LIBs are outlined. Also the main challenges and solutions for the large-scale direct regeneration of spent LIBs are proposed. Furthermore, this review aims to pave the way for the direct regeneration of materials in discarded lithium-ion batteries by offering a theoretical foundation and practical guidance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202313273 | DOI Listing |
Front Neurol
January 2025
Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China.
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.
View Article and Find Full Text PDFBME Front
January 2025
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
This study aims to clarify the effects of bioceramic interface cues on macrophages. Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring.
View Article and Find Full Text PDFFood Chem X
January 2025
Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel.
Food and agricultural commodities endure consistent contamination by mycotoxins, low molecular weight fungal metabolites, which pose severe health implications to humans together with staggering economic losses. Herein, a ratiometric aptasensor was constructed using silver-coated porous silicon (Ag-pSi) used as an efficient surface-enhanced Raman scattering (SERS) substrate. The bioassay included direct detection of fumonisin B (FB), an abundant and widespread contaminant, by a specific aptamer sequence immobilized on the porous transducer.
View Article and Find Full Text PDFBiol Direct
January 2025
Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China.
Background: Regeneration is the preferred approach to restore the structure and function after tissue damage. Rapid proliferation of cells over the site of damage is integral to the process of regeneration. However, even subtle mutations in proliferating cells may cause detrimental effects by eliciting abnormal differentiation.
View Article and Find Full Text PDFBMC Oral Health
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shanxi, China.
Background: To improve the success rate of mini-implants, some surgical guides have been developed through digital technologies to achieve three-dimensional (3D) guided mini-implants insertion. However, there is no a surgical guide which can be applied for the insertion of infrazygomatic mini-implant. In this study, we introduced a two-trajectories surgical guide and investigated the success rate of infrazygomatic mini-implants under the guidance of the template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!