Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF/Rh(CO) mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400812DOI Listing

Publication Analysis

Top Keywords

radical
5
rh-b-1
5
stabilization neutral
4
neutral [25]hexaphyrin101010
4
[25]hexaphyrin101010 radical
4
radical hetero-bimetal-coordination
4
hetero-bimetal-coordination stabilization
4
stabilization hexaphyrin101010
4
hexaphyrin101010 named
4
named "rosarin"
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!