In a previous study, we developed a novel analytical method to directly and simultaneously detect taste- and odor-active compounds using graphite carbon black (GCB)-assisted laser desorption ionization mass spectrometry (LDI-MS). In this study, we aimed to evaluate food quality using a variety of soy sauces using the method to discriminate each product. Graphite carbon black-laser desorption ionization-mass spectrometry allowed the provision of hundreds of MS peaks derived from soy sauces in both positive and negative modes without any tedious sample pretreatments. Principal component analysis using the obtained MS peaks clearly distinguished three soy sauce products based on the manufacturing countries (Japan, China, and India). Moreover, this method identified distinct MS peaks for discrimination, which significantly correlated with their quantitative amounts in the products. Thus, GCB-LDI-MS analysis was established as a simple and rapid technique for food analysis, illustrating the chemical patterns of food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbae034 | DOI Listing |
Crit Rev Anal Chem
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Geology and Mining Hanzhong Geological Brigade Co., Ltd., Hanzhong, 723000, China.
In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L initial concentration. Due to the larger surface area (349.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!