AMX Zintl compounds, crystallizing in several closely related layered structures, have recently garnered attention due to their exciting thermoelectric properties. In this study, we show that orthorhombic CaAgSb can be alloyed with hexagonal CaAgBi to achieve a solid solution with a structural transformation at ∼ 0.8. This transition can be seen as a switch from three-dimensional (3D) to two-dimensional (2D) covalent bonding in which the interlayer M-X bond distances expand while the in-plane M-X distances contract. Measurements of the elastic moduli reveal that CaAgSbBi becomes softer with increasing Bi content, with the exception of a steplike 10% stiffening observed at the 3D-to-2D phase transition. Thermoelectric transport measurements reveal promising Hall mobility and a peak of 0.47 at 620 K for intrinsic CaAgSb, which is higher than those in previous reports for unmodified CaAgSb. However, alloying with Bi was found to increase the hole concentration beyond the optimal value, effectively lowering the . Interestingly, analysis of the thermal conductivity and electrical conductivity suggests that the Bi-rich alloys are low Lorenz-number () materials, with estimated values of well below the nondegenerate limit of = 1.5 × 10 W Ω K, in spite of the metallic-like transport properties. A low Lorenz number decouples lattice and electronic thermal conductivities, providing greater flexibility for enhancing thermoelectric properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961731PMC
http://dx.doi.org/10.1021/acs.chemmater.3c02621DOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
8
alloying-induced structural
4
structural transition
4
transition promising
4
thermoelectric
4
promising thermoelectric
4
thermoelectric compound
4
caagsb
4
compound caagsb
4
caagsb amx
4

Similar Publications

In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.

View Article and Find Full Text PDF

Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.

View Article and Find Full Text PDF

In this study, we investigate a novel hybrid borocarbonitride (bpn-BCN) 2D material inspired by recent advances in carbon biphenylene synthesis, using first-principles calculations and semi-classical Boltzmann transport theory. Our analysis confirms the structural stability of bpn-BCN through formation energy, elastic coefficients, phonon dispersion, and molecular dynamics simulations at 300 K and 800 K. The material exhibits an indirect band gap of 0.

View Article and Find Full Text PDF

The potential application of materials referred to as perovskite hydrides in hydrogen storage - a crucial element of renewable energy systems - has sparked a great deal of interest. We use density functional theory (DFT) to investigate the structural, formation energy, hydrogen storage, electronics, thermoelectric and elastic properties of NaXH (X = Be, Mg, Ca, and Sr) hydrides. The band gap is calculated using WC-GGA and WC-GGA+mBJ potentials.

View Article and Find Full Text PDF

Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!