Purpose: Co-administering multiple intravenous (IV) agents via Y-connectors is a common practice in hospitalised and fasting surgical patients. However, there is a lack of reliable data confirming the physical compatibility of some combinations including IV oxycodone, a drug that is gaining increasing popularity in the perioperative period. Concern regarding physical drug incompatibilities precludes concurrent coadministration with other common drugs through a single lumen. This can result in the cessation of infusions to allow the administration of other medications, resulting in exacerbation of acute pain. This study aims to evaluate the physical compatibility of IV oxycodone with some commonly co-administered drugs and IV fluids.

Methods: Mixtures of oxycodone (1mg.mL) and the tested drugs and IV fluids were prepared in a ratio of 1:1. The mixtures were examined at 0 and 60 minutes from mixing and assessed using the European Conference Consensus Standards. This involved visual inspection (precipitation, turbidity, colour change, gas formation), spectrophotometry, and pH change. The tested drugs included ketamine, tramadol, clonidine, vancomycin, piperacillin/tazobactam, dexmedetomidine, cefotaxime, gentamicin, and paracetamol. In addition, the commonly used IV fluids tested included glucose 5% + sodium chloride 0.9% + 60 mmol potassium chloride, plasmalyte + dextrose 5%;plasmalyte + dextrose 5% + 55 mmol potassium chloride, plasmalyte + dextrose 5% + 55mmol potassium acetate, plasmalyte + dextrose 5% + 55mmol potassium dihydrogen phosphate, Hartmann's solution, Standard pediatric Total Parenteral Nutrition (TPN) 20/100 and TPN 25/150.

Results: IV oxycodone (1 mg.mL) showed no visual changes; no spectrophotometric absorption variability at 350, 410, or 550nm; and no pH changes of >0.5 at 0 or 60 minutes with any of the tested drugs or fluids in the concentrations tested.

Conclusion: According to European Consensus Conference Standards, IV Oxycodone at 1 mg.mL is physically compatible in a ratio of 1:1 v/v with all investigated drugs and fluids tested for at least 60 minutes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964778PMC
http://dx.doi.org/10.2147/DDDT.S444581DOI Listing

Publication Analysis

Top Keywords

tested drugs
12
drugs fluids
12
plasmalyte dextrose
12
physical compatibility
8
fluids tested
8
mmol potassium
8
potassium chloride
8
chloride plasmalyte
8
dextrose 55mmol
8
55mmol potassium
8

Similar Publications

Bacterial endospores are ubiquitous and are responsible for various human infections. Recently, we reported that an ionic liquid (IL)-based sample preparation method (named pTRUST) facilitated highly efficient shotgun analysis of the Bacillus subtilis spore proteome in trace samples. In this study, we evaluated the efficiency and applicability of the pTRUST technology using three different spore preparations: one purified from the closely related subspecies B.

View Article and Find Full Text PDF

Background: Juvenile Idiopathic arthritis (JIA) is one of the most common chronic diseases in children. It still remains a challenge to treat refractory poly-articular course JIA patients, especially in Bangladesh, where patients from low socio-economic backgrounds are unable to manage biological agents. Tofacitinib is one of the alternative options to biological agents, which can be taken orally and is cost effective.

View Article and Find Full Text PDF

Analysis of Drug Molecules in Living Cells.

Crit Rev Anal Chem

January 2025

Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.

Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.

View Article and Find Full Text PDF

Rapid and Environment-Friendly LC-MS/MS for Simultaneous Analysis of Amino Acids in Veterinary Medicine.

Vet Med Sci

January 2025

Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural Affairs, Gimcheon-si, Republic of Korea.

Background: Amino acid supplements are crucial for animal health and productivity. Traditional analysis methods face limitations like complexity, long testing times and toxic reagents. Therefore, a more efficient and reliable method is needed.

View Article and Find Full Text PDF

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!