The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963656PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101032DOI Listing

Publication Analysis

Top Keywords

small intestinal
12
intestinal submucosa
12
tissue regeneration
8
application small
4
submucosa tissue
4
regeneration distinctive
4
distinctive three-dimensional
4
three-dimensional architecture
4
architecture biological
4
biological functionality
4

Similar Publications

Predicting postoperative adhesive small bowel obstruction in infants under 3 months with intestinal malrotation: a random forest approach.

J Pediatr (Rio J)

January 2025

Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:

Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.

Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection.

Vet Microbiol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication.

View Article and Find Full Text PDF

In Vivo visualization of microplastic degradability and intestinal functional responses in a plastivore insect.

J Hazard Mater

January 2025

School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:

The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.

View Article and Find Full Text PDF

α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.

View Article and Find Full Text PDF

Introduction: The conjugative transfer of antibiotic resistance genes (ARGs) mediated by plasmids occurred in different intestinal segments of mice was explored.

Methods: The location of ARG donor bacteria and ARGs was investigated by qPCR, flow cytometry, and small animal imaging. The resistant microbiota was analyzed by gene amplification sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!