Polymeric materials are being increasingly used to replace many metallic components due to their beneficial properties such as higher strength-to-weight ratio and corrosion resistance. However, the widespread use of polymers poses a risk to the environment as they are not biodegradable. The addition of the waste jute fiber and sawdust fiber as reinforcement to the epoxy resin improved its toughness and induced the biodegradability of the polymer. To examine the effect of the jute fiber and sawdust fiber on biodegradability, the composites were then kept in the drainage system for one year, and the impact energy and fracture morphology of the as-cast and weathered samples were examined using a drop ball impact test and a Charpy impact test. During the weathering period, weight gain was initially observed due to the water absorption by the porous fibers, but after three months, the composites started to lose weight due to the degradation of the fiber by swelling and microbial attacks. Microorganisms in the drainage system used the fiber as their energy source, which resulted in the deterioration of the fiber and the production of CO. The production of CO was identified by the FTIR analysis of the weathered composite samples. TGA analysis of the as-cast and weathered samples reveals the reduction of the onset thermal degradation temperature of the weathered composites due to the degradation of the composites. The fiber disintegrated through microbial attack and the fiber swelling caused by the absorption of water by jute fiber and sawdust fiber is identified through SEM imaging. The SEM image also reveals the formation of biofilms and the growth of microorganisms at the fibers. A higher growth rate of the microorganisms was observed in the jute fiber composite than in the sawdust fiber composite, as sawdust contains a high level of lignin that protects it from degradation. The results of this study suggest that both sawdust fiber and jute fiber composites induce biodegradability in the epoxy matrix, but jute fiber was more prominent in this regard. The discovery paves the way for using natural fibers in biodegradable polymer composites, reducing polymeric pollution in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963374PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28110DOI Listing

Publication Analysis

Top Keywords

jute fiber
24
sawdust fiber
20
fiber
16
fiber sawdust
12
natural fibers
8
drainage system
8
as-cast weathered
8
weathered samples
8
impact test
8
fiber swelling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!