Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964834PMC
http://dx.doi.org/10.1080/14686996.2024.2327276DOI Listing

Publication Analysis

Top Keywords

clay nanotubes
12
biological surfaces
8
micropatterning biologically
4
biologically derived
4
derived surfaces
4
surfaces functional
4
functional clay
4
nanotubes
4
nanotubes micropatterning
4
micropatterning biological
4

Similar Publications

Regulating Lithium-Ion Transport in PEO-Based Solid-State Electrolytes through Microstructures of Clay Minerals.

ACS Appl Mater Interfaces

January 2025

Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.

Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.

View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Cataluminescence Sensor Based on Halloysite Nanotubes/MgO Nanocomposite for Rapid Detection of Ether.

Luminescence

December 2024

Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China.

MgO surface makes it easy to introduce a certain amount of oxygen vacancy and can enhance catalytic reaction activity. Besides, as a silicoaluminate mineral material, halloysite nanotube (HNT) has a unique tubular structure. In this paper, the HNTs@MgO composite was successfully synthesized based on natural clay material HNTs as a carrier, and the CTL sensor based on HNTs@MgO was successfully developed for the rapid determination of ether in air.

View Article and Find Full Text PDF

Adhesive thermosensitive polydopamine hydrogel containing MnO anchored halloysite clay for treatment of ulcerative colitis.

J Colloid Interface Sci

December 2024

Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China. Electronic address:

Ulcerative colitis (UC), a common inflammatory bowel disease, causes ulcers of the colon and rectum. One of the important reasons for intestinal lesions caused by UC is that immune cells produce large amounts of reactive oxygen species (ROS). Herein, we developed an adhesive thermosensitive polydopamine hydrogel containing MnO nanozyme anchored halloysite nanotubes (MnO@HNTs@PDA) to remove ROS produced by immune cells and treatment of UC.

View Article and Find Full Text PDF

Background/objectives: The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by low solubility in water. To overcome this limitation, some carrier systems, such as halloysite nanotubes (HNTs), can be used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!