mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an evolutionarily conserved lysosomal membrane protein that is highly expressed in several cancer cells. Multiple recent studies have identified mEAK-7 as a positive activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an alternative mTOR complex, implying that mEAK-7 plays an important role in the promotion of cancer proliferation and migration. In addition, structural analyses investigating interactions between mEAK-7 and V-ATPase, a protein complex responsible for regulating pH homeostasis in cellular compartments, have suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1 activation. The C-terminal α-helix of mEAK-7 binds to the D and B subunits of the V-ATPase, creating a pincer-like grip around its B subunit. This binding undergoes partial disruption during ATP hydrolysis, potentially enabling other proteins such as mTOR to bind to the α-helix of mEAK-7. mEAK-7 also promotes chemoresistance and radiation resistance by sustaining DNA damage-mediated mTOR signaling through interactions with DNA-PKcs (DNA-dependent protein kinase catalytic subunit). Taken together, these findings indicate that mEAK-7 may be a promising therapeutic target against tumors. However, the precise molecular mechanisms and signal transduction pathways of mEAK-7 in cancer remain largely unknown, motivating the need for further investigation. Here, we summarize the current known roles of mEAK-7 in normal physiology and cancer development by reviewing the latest studies and discuss potential future developments of mEAK-7 in targeted cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963491 | PMC |
http://dx.doi.org/10.3389/fonc.2024.1375498 | DOI Listing |
Front Oncol
March 2024
Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States.
mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an evolutionarily conserved lysosomal membrane protein that is highly expressed in several cancer cells. Multiple recent studies have identified mEAK-7 as a positive activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an alternative mTOR complex, implying that mEAK-7 plays an important role in the promotion of cancer proliferation and migration. In addition, structural analyses investigating interactions between mEAK-7 and V-ATPase, a protein complex responsible for regulating pH homeostasis in cellular compartments, have suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1 activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210.
Vacuolar-type adenosine triphosphatases (V-ATPases) not only function as rotary proton pumps in cellular organelles but also serve as signaling hubs. To identify the endogenous binding partners of V-ATPase, we collected a large dataset of human V-ATPases and did extensive classification and focused refinement of human V-ATPases. Unexpectedly, about 17% of particles in state 2 of human V-ATPases display additional density with an overall resolution of 3.
View Article and Find Full Text PDFLife Sci Alliance
November 2022
Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.
View Article and Find Full Text PDFHeliyon
December 2020
Section of Periodontics, University of California, Los Angeles, School of Dentistry, Los Angeles, CA, 90095, USA.
Regulation of mTOR signaling depends on an intricate interplay of post-translational protein modification. Recently, mEAK-7 (mTOR associated protein, eak-7 homolog) was identified as a positive activator of mTOR signaling via an alternative mTOR complex. However, the upstream regulation of mEAK-7 in human cells is not known.
View Article and Find Full Text PDFiScience
July 2019
Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
MTOR associated protein, eak-7 homolog (mEAK-7), activates mechanistic target of rapamycin (mTOR) signaling in human cells through an alternative mTOR complex to regulate S6K2 and 4E-BP1. However, the role of mEAK-7 in human cancer has not yet been identified. We demonstrate that mEAK-7 and mTOR signaling are strongly elevated in tumor and metastatic lymph nodes of patients with non-small-cell lung carcinoma compared with those of patients with normal lung or lymph tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!