Introduction: To reliably solve the EEG inverse problem, accurate EEG forward solutions based on a detailed, individual volume conductor model of the head are essential. A crucial-but often neglected-aspect in generating a volume conductor model is the choice of the tissue conductivities, as these may vary from subject to subject. In this study, we investigate the sensitivity of EEG forward and inverse solutions to tissue conductivity uncertainties for sources distributed over the whole cortex surface.

Methods: We employ a detailed five-compartment head model distinguishing skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider uncertainties of skin, skull, gray matter, and white matter conductivities. We use the finite element method (FEM) to calculate EEG forward solutions and goal function scans (GFS) as inverse approach. To be able to generate the large number of EEG forward solutions, we employ generalized polynomial chaos (gPC) expansions.

Results: For sources up to a depth of 4 cm, we find the strongest influence on the signal topography of EEG forward solutions for the skull conductivity and a notable effect for the skin conductivity. For even deeper sources, e.g., located deep in the longitudinal fissure, we find an increasing influence of the white matter conductivity. The conductivity variations translate to varying source localizations particularly for quasi-tangential sources on sulcal walls, whereas source localizations of quasi-radial sources on the top of gyri are less affected. We find a strong correlation between skull conductivity and the variation of source localizations and especially the depth of the reconstructed source for quasi-tangential sources. We furthermore find a clear but weaker correlation between depth of the reconstructed source and the skin conductivity.

Discussion: Our results clearly show the influence of tissue conductivity uncertainties on EEG source analysis. We find a particularly strong influence of skull and skin conductivity uncertainties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963400PMC
http://dx.doi.org/10.3389/fnhum.2024.1335212DOI Listing

Publication Analysis

Top Keywords

eeg forward
20
conductivity uncertainties
16
forward solutions
16
tissue conductivity
12
white matter
12
source localizations
12
conductivity
9
eeg
8
sensitivity eeg
8
eeg source
8

Similar Publications

Dynamic domain adaptive EEG emotion recognition based on multi-source selection.

Rev Sci Instrum

January 2025

School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China.

Emotion recognition based on electroencephalogram (EEG) has always been a research hotspot. However, due to significant individual variations in EEG signals, cross-subject emotion recognition based on EEG remains a challenging issue to address. In this article, we propose a dynamic domain-adaptive EEG emotion recognition method based on multi-source selection.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

Imagine going left versus imagine going right: whole-body motion on the lateral axis.

Sci Rep

December 2024

Creative Robotics Lab, UNSW, Sydney, 2021, Australia.

Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is  assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.

View Article and Find Full Text PDF

Multimodal autism detection: Deep hybrid model with improved feature level fusion.

Comput Methods Programs Biomed

December 2024

Department of Computer Science and Engineering, School of Computing, SASTRA Deemed to be University, Thanjavur, Tamilnadu, 613402, India.

Objective: Social communication difficulties are a characteristic of autism spectrum disorder (ASD), a neurodevelopmental condition. The earlier method of diagnosing autism largely relied on error-prone behavioral observation of symptoms. More intelligence approaches are in progress to diagnose the disorder, which still demands improvement in prediction accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!