AI Article Synopsis

  • Taihu Lake, the third largest freshwater lake in China, is facing rapid salinization, but the effects of sodium (Na) on ion exchange processes remain under-researched.
  • A study using adsorption-exchange experiments and MINTEQ modeling found that higher levels of Na in the lake increase the exchange of essential base cations like calcium (Ca) and magnesium (Mg), with Ca being preferentially exchanged over Mg.
  • The results indicate that as salinity increases, the redistribution of these ions between water and sediment may significantly impact the lake's ecosystem, making it essential to monitor these changes.

Article Abstract

Taihu Lake, the third largest freshwater lake in China, has experienced rapid salinization in the past decades; however, little is known about the impact of sodium (Na) on ion exchange in the lake environment. To explore the potential effect of increased Na on the migration of base cations (Ca and Mg) and resulting redistribution between the water and sediment, we used the adsorption-exchange experiment, MINTEQ modeling to explore the cation exchange induced by high Na input, and its impact on the redistribution of Ca and Mg in Taihu different media. The results indicated that exchanged quantity of Ca and Mg increased with time, and the exchange process reached 90% during 0-4 h and reached equilibrium after 24 h under 100 mg/L Na (the maximum Na concentration in Taihu sediment pore water). Our MINTEQ modeled result indicated that the exchanged quantity of Ca and Mg increased with the increasing Na concentration, with Ca being preferably exchanged over Mg at the same Na concentration. The MINTEQ model further predicted that, in the Taihu lake environment, the exchange adsorption would reach the equilibrium at the concentration of 6000 mg/L Na, with exchanged Ca and Mg accounting for 47% and 55% of the total exchangeable Ca and Mg in the sediment, respectively. Although current Na-induced exchange in the Taihu lake has been far from the equilibrium, the MINTEQ result confirmed the existence of this reaction and predicted the potential redistribution of base cations or Ca/Mg ratio in the lake sediment and water phase with further Na increase. Furthermore, our field observations not only confirmed the existence of Na-induced cation exchange in this lake environment but also were generally in agreement with our experimental and modeled results. The increased salinization-induced ion exchange would alter the re-distribution of base cations and the resulting potential ecosystem consequences should be given close attention in this large freshwater lake.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33036-zDOI Listing

Publication Analysis

Top Keywords

base cations
16
taihu lake
16
lake environment
12
lake
9
field observations
8
lake china
8
freshwater lake
8
ion exchange
8
exchange lake
8
cation exchange
8

Similar Publications

From solubility to efficiency: Per- and polyfluoroalkyl substances (PFAS) regeneration from anion exchange resins.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:

This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

Conformational versatility among crystalline solids of L-phenylalanine derivatives.

Acta Crystallogr C Struct Chem

February 2025

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.

In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.

View Article and Find Full Text PDF

A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.

View Article and Find Full Text PDF

Functionalized 2D multilayered MXene for selective and continuous recovery of rare earth elements from real wastewater matrix.

J Hazard Mater

January 2025

Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark. Electronic address:

Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene TiCT adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of TiCT to Eu(III) and Ho(III) reached 892.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!