Ranges of portable systems to measure leaf gas-exchange parameters are available. They allow real-time measurements of the photosynthesis rate (A), transpiration rate (E), stomatal conductance (g), and intercellular CO concentration (C). Photosynthetic CO uptake is one of the most frequently studied plant physiological processes. The measurement is precise, simple, and noninvasive to perform in vivo. We describe the use of this method in environmental-controlled plant production systems at different temperatures on the growth and development of common buckwheat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3794-4_14 | DOI Listing |
Front Plant Sci
December 2024
State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
Rapeseed ( L.) is a major agricultural crop with diverse applications, particularly in the production of seed oil for both culinary use and biodiesel. However, its photosynthetic efficiency, a pivotal determinant of yield, remains relatively low compared with other C plants such as rice and soybean, highlighting the necessity of identifying the genetic loci and genes regulating photosynthesis in rapeseed.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A), stomatal conductance (g) and leaf hydraulic conductance (K) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K) beyond the optimum required for maximum g (g).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, United States.
Sci Rep
December 2024
Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, 430070, China.
The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!