This research commences a unit statistical model named power new power function distribution, exhibiting a thorough analysis of its complementary properties. We investigate the advantages of the new model, and some fundamental distributional properties are derived. The study aims to improve insight and application by presenting quantitative and qualitative perceptions. To estimate the three unknown parameters of the model, we carefully examine various methods: the maximum likelihood, least squares, weighted least squares, Anderson-Darling, and Cramér-von Mises. Through a Monte Carlo simulation experiment, we quantitatively evaluate the effectiveness of these estimation methods, extending a robust evaluation framework. A unique part of this research lies in developing a novel regressive analysis based on the proposed distribution. The application of this analysis reveals new viewpoints and improves the benefit of the model in practical situations. As the emphasis of the study is primarily on practical applications, the viability of the proposed model is assessed through the analysis of real datasets sourced from diverse fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358306PMC
http://dx.doi.org/10.1038/s41598-024-57390-7DOI Listing

Publication Analysis

Top Keywords

analysis
5
model
5
unit distribution
4
distribution properties
4
properties estimation
4
estimation regression
4
regression analysis
4
analysis commences
4
commences unit
4
unit statistical
4

Similar Publications

Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A.

View Article and Find Full Text PDF

Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions.

Microbiol Res

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.

View Article and Find Full Text PDF

VcaNet: Vision Transformer with fusion channel and spatial attention module for 3D brain tumor segmentation.

Comput Biol Med

January 2025

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China. Electronic address:

Accurate segmentation of brain tumors from MRI scans is a critical task in medical image analysis, yet it remains challenging due to the complex and variable nature of tumor shapes and sizes. Traditional convolutional neural networks (CNNs), while effective for local feature extraction, struggle to capture long-range dependencies crucial for 3D medical image analysis. To address these limitations, this paper presents VcaNet, a novel architecture that integrates a Vision Transformer (ViT) with a fusion channel and spatial attention module (CBAM), aimed at enhancing 3D brain tumor segmentation.

View Article and Find Full Text PDF

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!