Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The knowledge of proper fertigation across various irrigation levels is necessary for maximizing peanut yield and irrigation use efficiency in arid areas, and it also can effectively alleviate the risk of nutrient deficiency induced by water stress. This study evaluated the effectiveness of cobalt combined with two zinc application methods on peanut nutrient uptake, yield, and irrigation water use efficiency across varying irrigation levels. A split-split plot experiment was carried out in 2021 and 2022. Three peanut gross water requirement (GWR) levels (100%, 80%, and 60%) were designated for main plots. Subplots featured plants treated with either 0 or 7.5 mg L of cobalt. The sub-sub plots assessed chelated zinc effects at rates of 0 and 2 g L via foliar and soil applications. In comparison to the control (100% GWR), nutrient uptake decreased, with sodium being the exception, and there was an increase in soil pH at 60% GWR. The results showed also significant reductions in yield and water use by approximately 60.3% and 38.1%, respectively. At this irrigation level, applying zinc via soil, either alone or combined with cobalt, led to significant yield increases of 89.7% and 191.3% relative to the control. Also, it's crucial to note that cobalt application negatively affected iron and copper at 60% GWR, but this impact was lessened with soil-applied zinc. Hence, under a similar circumstance, treating stressed peanut plants with additional foliar applications of iron + copper and applying zinc via soil, could enhance nutrient uptake and improve yield. On the other hand, at 80% GWR, a combination of foliar-applied zinc and cobalt, had a tremendous impact on the absorption of (nitrogen, phosphorus, magnesium, and zinc), resulting in enhanced agronomic traits and decreased water losses. Additionally, at this irrigation level, foliar zinc application alone yielded a 32.4% increase compared to the 80% GWR control. When combined with cobalt, there was a 70.0% surge in water use. Based on this knowledge, the study suggests using 80% GWR and treating peanut plants with a combination of foliar-applied zinc and cobalt. This strategy aids plants in countering the adverse effects of water stress, ultimately leading to enhanced yield and irrigation water use efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966013 | PMC |
http://dx.doi.org/10.1038/s41598-024-56898-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!