Although Warburg discovered pH discrepancies between tumor and normal tissues nearly 100 years ago, developing therapies to take advantage of this concept was relatively slow for the first 70 years. During the last 30 years, there has been an exponential increase in the use of pH-dependent strategies for both low molecular weight drugs and nanoparticles. Two frequently discussed approaches are the chemotherapy's release from pH-sensitive covalent linkages of macromolecules or from pH-dependent disruption of charged polymeric nanoparticles. In contrast, pH-dependent non-covalent bonds between the chemotherapy agent and macromolecules have rarely been discussed, yet this underappreciated strategy has great potential. These non-covalent interactions are primarily ionic or hydrogen bonds with supporting roles from hydrophobic bonds. In addition to the facile coupling of the drug with the carrier, these non-covalent interactions may show marked pH dependence. Consistent with pH dependence, many of these drug-loaded carriers showed significant and, in some cases, striking activity. In this review, we will focus on pH-sensitive non-covalent bonds, highlighting the release of drugs from diverse carriers such as tetrahedron DNA structures, cyclodextrin, polymeric carriers, and carbon-based quantum particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059240 | PMC |
http://dx.doi.org/10.24976/Discov.Med.202436182.42 | DOI Listing |
Matrix Biol
January 2025
Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21, 70599 Stuttgart, Germany. Electronic address:
Phycobiliproteins of the cyanobacterium Arthrospira platensis, known as Spirulina, are protein-chromophore complexes which are used by the organism to capture light energy. Allophycocyanin and C-phycocyanin are prominent in providing a natural source of blue food coloring. An unresolved issue remains the rapid loss of the native conformation of the pigment, leading to altered color with changing pH.
View Article and Find Full Text PDFInt J Biol Macromol
June 2024
School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science & Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:
Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2024
Institute for Protein Design, University of Washington, Seattle, WA, USA.
Angew Chem Int Ed Engl
June 2024
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China).
In biological systems, nucleotide quadruplexes (such as G-quadruplexes) in DNA and RNA that are held together by multiple hydrogen bonds play a crucial functional role. The biomimetic formation of these hydrogen-bonded quadruplexes captured by artificial systems in water poses a significant challenge but can offer valuable insights into these complex functional structures. Herein, we report the formation of biomimetic hydrogen-bonded G ⋅ C ⋅ G ⋅ C quadruplex captured by a tetraphenylethene (TPE) based octacationic spirobicycle (1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!