Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Primary treatment processes have gained attention in recent research and development due to their potential for redirecting carbon towards anaerobic digestion, which can subsequently be used for the production of biomethane. The alternating activated adsorption (AAA) process is implemented on full-scale at several wastewater treatment plants across Europe. However, there is a lack of full-scale studies of advanced carbon capture technology implementations in literature. This study demonstrates the ability of a full-scale AAA process to remove and redirect carbon in a region heavily influenced by tourism. Periods in high and off-season were compared to study the impact of tourism on the composition of the wastewater and the AAA-process. The wastewater characteristics of the high season differed significantly from the low season. During the high season, the PE increased by 37 %, total suspended solids went up by 75 % and chemical oxygen demand increased by 58 %, compared to the low season. Additionally, 80 % of the low volatile lipophilic substances (LVLS) measured were attributed to the impact of tourism. A mass-balance of primary treatment for chemical oxygen demand (COD) and LVLS was conducted for both trial periods. The primary treatment was able to eliminate 56 % of the COD and 62 % of the LVLS in the non-tourist season and 53 % of the COD and 54 % of the LVLS in the tourist season. The increased wastewater load was effectively managed in the AAA-process. Key process parameters like sludge settling characteristics, hydraulic retention time and total suspended solids removal rates remained stable during the high season in winter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171869 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!