The subapical labial sensory organ of spotted lanternfly .

Open Biol

Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.

Published: March 2024

Deciphering how spotted lanternfly (SLF), an invasive polyphagous planthopper in North America, engages with its environment is a pressing issue with fundamental biological significance and economic importance. This interaction primarily depends on olfaction. However, the cellular basis of olfaction in SLF remains elusive. Here we investigate the neuronal and functional organization of the subapical labial sensory organ using scanning electron microscopy and electrophysiological recordings. This organ is believed to supply planthoppers with crucial sensory information that influences their subsequent feeding behaviour. We find in SLF that this organ comprises two identical placoid sensilla, each housing two distinct neurons. The A neuron displays a remarkable sensitivity to changes in airflow speed. Importantly, the same neuron also exhibits robust excitatory responses exclusively to three aldehydes out of a diverse pool of 85 tested odorants and inhibitory responses to 62 other odorants. By contrast, the B neuron solely serves as an olfactory detector, showing strong excitatory responses to 17 odorants and inhibitory responses to only three. The results provide a potential cellular basis for the behavioural responses of SLF to its ecologically relevant stimuli. Our study also identifies new odorants that may be useful for managing this serious pest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965328PMC
http://dx.doi.org/10.1098/rsob.230438DOI Listing

Publication Analysis

Top Keywords

subapical labial
8
labial sensory
8
sensory organ
8
spotted lanternfly
8
cellular basis
8
excitatory responses
8
odorants inhibitory
8
inhibitory responses
8
responses odorants
8
responses
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!