Presenilin-2 (PSEN2) mutation is one of the pathogenic factors of autosomal dominant early-onset Alzheimer's disease (EOAD). We generated a human induced pluripotent stem cell (iPSC) line from fibroblasts of an EOAD patient carrying PSEN2 mutation (c.716 T > C) utilizing Sendai reprogramming kit. The resulting iPSC line carried patient-specific point mutation, exhibited typical iPSC morphology, retained a normal karyotype, expressed pluripotency markers, and could form embryoid bodies. Established iPSC line serve as valuable resource for EOAD disease pathogenesis modelling and drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2024.103391 | DOI Listing |
Alzheimers Res Ther
February 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
Variants in PSEN1, PSEN2, and APP are major genetic causes of early-onset Alzheimer's disease (EOAD). Our study aimed to identify the genotypic and phenotypic spectrums in a Chinese EOAD cohort and confirm their pathogenicity by functional analysis. This study included 304 unrelated clinically diagnosed EOAD participants of Chinese Han ancestry.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
Aims: Alzheimer's disease (AD) is a leading cause of dementia, with increasing prevalence. Mutations in genes like MAPT, PSEN1, and PSEN2 are risk factors, leading to the development of several AD model mice. Recent hypotheses suggest AD brain pathology involves abnormal neurodevelopment, decreased pH, and neural hyperexcitation.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.
Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.
Nat Commun
November 2024
Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium.
Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!