Dehydrozaluzanin C- derivative protects septic mice by alleviating over-activated inflammatory response and promoting the phagocytosis of macrophages.

Int Immunopharmacol

The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Published: May 2024

Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111889DOI Listing

Publication Analysis

Top Keywords

inflammatory response
12
dhzd
8
mouse model
8
crkp infection
8
macrophages
5
dehydrozaluzanin derivative
4
derivative protects
4
protects septic
4
septic mice
4
mice alleviating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!