This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120712 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic.
In this paper, a new measurement procedure is presented as an experimental study. In this experimental study, a measurement system using the pass-through pulsed ultrasonic method was used. The pilot application of the measurement setup was to monitor mechanical wave changes during the solidification and hardening of fine-grained cement-based composites.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
Beryllium metal is used as neutron moderator and reflector or multiplier in certain types of fission or fusion reactors. Dismantling of these reactors will produce radioactive beryllium waste, classified as low- or intermediate-level waste, that will need to be stabilised and solidified before being sent to disposal. The cementation process is under consideration because it may offer a good compromise between simplicity of implementation, cost, and quality of the final cemented wasteform.
View Article and Find Full Text PDFJ Environ Manage
November 2024
College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
Due to the different physicochemical properties of lead (Pb) and arsenic (As), coupled remediation processes of contaminated soils containing Pb and As have always been a technical challenge. In the present study, a novel solidifying agent (BER) was synthesized using alkaline oxygen furnace slag (BOFS), modified electrolytic manganese residue (EMR) and red mud (RM). The solidifying agent was synergistically used with Fenton reagent for solidifying/stabilizing Pb- and As-contaminated soils.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied.
View Article and Find Full Text PDFMaterials (Basel)
May 2024
School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
In order to overcome the problems of the high economic and environmental costs of a traditional ordinary portland cement-based binder, this study used self-combusted coal gangue (SCCG), granulated blast furnace slag (GBFS) and phosphorous slag (PS) to prepare a novel SCCG-GBFS-PS (SGP) ternary alkali-activated binder for solidifying silty soft clay (SC). Firstly, the parameters of the SGP ternary binder were optimized using orthogonal experiments. Then the effects of the SGP ternary binder content (mass ratio of the SGP ternary binder and the SGP-solidified soil), initial water content of SC (mass ratio of SC' water and SC) and types of additives on the unconfined compressive strength (UCS) of the SGP-solidified soil were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!