Photocatalysis is typically monitored via analysis of phases in isolation and focuses on the removal of a target analyte from the solution phase. Here we analyze the photocatalytic action of a TiO-nitrogen-doped graphene quantum dot (NGQD) composite on a target analyte, phenol, using comprehensive multiphase NMR (CMP-NMR) which observes signals in solid, solution, and gel phases . Phenol preferentially interacts with the composite photocatalyst compared to pure TiO, increasing its effective concentration near the catalyst surface and its degradation rate. The presence of NGQDs in the composite reduced the fouling of the catalyst surface and caused a reduction of photogenerated intermediates. Increased heterogeneous interactions, likely mediated by π-π interactions, are hypothesized to cause each of these improvements in the observed photocatalytic performance by TiO-NGQDs. CMP-NMR allows the elucidation of how the photocatalytic mechanism is enhanced via material design and provides a foundation for the development of efficient photocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000646PMC
http://dx.doi.org/10.1021/acs.jpclett.4c00335DOI Listing

Publication Analysis

Top Keywords

photocatalytic performance
8
tio-nitrogen-doped graphene
8
graphene quantum
8
quantum dot
8
heterogeneous interactions
8
target analyte
8
catalyst surface
8
improved photocatalytic
4
performance tio-nitrogen-doped
4
dot composites
4

Similar Publications

The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.

View Article and Find Full Text PDF

Herein, the construction of potential donor-acceptor (D-A) structures was guided using density-functional theory (DFT) calculations. The photocatalytic nitrogen fixation performance of TAPT-CHF was then experimentally determined to be 327.58 μmol g h, which was attributed to its efficient photo-induced charge separation and migration ability.

View Article and Find Full Text PDF

Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.

View Article and Find Full Text PDF

Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.

View Article and Find Full Text PDF

This work aimed at addressing the problem of hexavalent chromium pollution in the water environment, designing and preparing the Cu/CuO/NH-MIL-88B (Fe) heterojunction material with NH-MIL-88B (Fe) as the carrier, Cu/CuO was loaded on NH-MIL-88B (Fe) by light-assisted reduction. The loading of CuO effectively improves the visible light absorption capacity of the composite material. The SPR effect of Cu improves the separation and transfer of photogenerated carriers in the composite material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!