A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative Analysis of Trace Analytes with Highly Sensitive SERS Tags on Hydrophobic Interface. | LitMetric

Surface-enhanced Raman scattering (SERS) presents a promising avenue for trace matter detection by using plasmonic nanostructures. To tackle the challenges of quantitatively analyzing trace substances in SERS, such as poor enrichment efficiency and signal reproducibility, this study proposes a novel approach using Au@internal standard@Au nanospheres (Au@IS@Au NSs) for realizing the high sensitivity and stability in SERS substrates. To verify the feasibility and stability of the SERS performances, the SERS substrates have exhibited exceptional sensitivity for detecting methyl blue molecules in aqueous solutions within the concentration range from 10 M to 10 M. Additionally, this strategy also provides a feasible way of quantitative detection of antibiotic in the range of 10 M to 10 M. Trace antibiotic residue on the surface of shrimp in aquaculture waters was successfully conducted, achieving a remarkably low detection limit of 10 M. The innovative approach has great potential for the rapid and quantitative detection of trace substances, which marks a noteworthy step forward in environmental detection and analytical methods by SERS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c18980DOI Listing

Publication Analysis

Top Keywords

trace substances
8
stability sers
8
sers substrates
8
quantitative detection
8
sers
7
trace
5
detection
5
quantitative analysis
4
analysis trace
4
trace analytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!