Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gradient-type distributed optimization methods have blossomed into one of the most important tools for solving a minimization learning task over a networked agent system. However, only one gradient update per iteration makes it difficult to achieve a substantive acceleration of convergence. In this article, we propose an accelerated framework named multiupdates single-combination (MUSIC) allowing each agent to perform multiple local updates and a single combination in each iteration. More importantly, we equip inexact and exact distributed optimization methods into this framework, thereby developing two new algorithms that exhibit accelerated linear convergence and high communication efficiency. Our rigorous convergence analysis reveals the sources of steady-state errors arising from inexact policies and offers effective solutions. Numerical results based on synthetic and real datasets demonstrate both our theoretical motivations and analysis, as well as performance advantages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3376421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!