In the emerging research field of bioelectronic medicine, it has been indicated that neuromodulation of the vagus nerve (VN) has the potential to treat various conditions such as epilepsy, depression, and autoimmune diseases. In order to reduce side effects, as well as to increase the effectiveness of the delivered therapy, sub-fascicle stimulation specificity is required. In the electrical domain, increasing spatial selectivity can only be achieved using invasive and potentially damaging approaches like compressive forces or nerve penetration. To avoid these invasive methods while obtaining a high spatial selectivity, a 2-mm diameter extraneural cuff-shaped proof-of-concept design with integrated lead zirconate titanate (PZT) based ultrasound (US) transducers is proposed in this article. For the development of the proposed concept, wafer-level microfabrication techniques are employed. Moreover, acoustic measurements are performed on the device, in order to characterize the ultrasonic beam profiles of the integrated PZT-based US transducers. A focal spot size of around [Formula: see text] is measured for the proposed cuff. Moreover, the curvature of the device leads to constructive interference of the US waves originating from multiple PZT-based US transducers, which in turn leads to an increase of 45% in focal pressure compared to the focal pressure of a single PZT-based US transducer. Integrating PZT-based US transducers in an extraneural cuff-shaped design has the potential to achieve high-precision US neuromodulation of the VN without requiring intraneural implantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2024.3381923 | DOI Listing |
IEEE Trans Ultrason Ferroelectr Freq Control
September 2024
This paper reports a 30×12 row-column (RC) addressed flexible piezoelectric micromachined ultrasound transducer (PMUT) array with a top-down fabrication process. The fabrication uses a temporary carrier wafer from which the array device is released by deep reactive ion etching (DRIE). About 0.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2024
In the emerging research field of bioelectronic medicine, it has been indicated that neuromodulation of the vagus nerve (VN) has the potential to treat various conditions such as epilepsy, depression, and autoimmune diseases. In order to reduce side effects, as well as to increase the effectiveness of the delivered therapy, sub-fascicle stimulation specificity is required. In the electrical domain, increasing spatial selectivity can only be achieved using invasive and potentially damaging approaches like compressive forces or nerve penetration.
View Article and Find Full Text PDFIEEE Sens J
April 2023
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318 USA.
Low-temperature, flexible, 0-3 composite piezoelectric materials can decrease the size, cost, and complexity of high-frequency acoustic devices on temperature sensitive substrates such as those in catheter based ultrasonic devices and acoustooptic sensors. In this paper, the application of low-temperature 0-3 connected composite thick films in flexible, non-planar, high frequency ultrasonic devices is reported. A flexible high-frequency ultrasound transducer and an acousto-optic radio-frequency (RF) field sensor are demonstrated utilizing PZT-based composite thick films.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2024
A direct comparison of performance and acoustic properties of high-intensity focused ultrasonic transducers utilizing lead-free (sodium bismuth titanate-NBT) and lead-based (lead zirconate titanate-PZT) piezoceramics is discussed. All transducers operate at 12 MHz at third harmonic frequency, having an outer diameter of 20 mm, a central hole of 5 mm in diameter, and a radius of curvature of 15 mm. The electroacoustic efficiency determined by a radiation force balance is evaluated in a range of input power levels up to 15 W.
View Article and Find Full Text PDFMicrosyst Nanoeng
February 2023
State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, 710049 Xi'an, China.
Ultrasonic fluid bubble detection is important in industrial controls, aerospace systems and clinical medicine because it can prevent fatal mechanical failures and threats to life. However, current ultrasonic technologies for bubble detection are based on conventional bulk PZT-based transducers, which suffer from large size, high power consumption and poor integration with ICs and thus are unable to implement real-time and long-term monitoring in tight physical spaces, such as in extracorporeal membrane oxygenation (ECMO) systems and dialysis machines or hydraulic systems in aircraft. This work highlights the prospect of capacitive micromachined ultrasonic transducers (CMUTs) in the aforementioned application situations based on the mechanism of received voltage variation caused by bubble-induced acoustic energy attenuation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!