Accuracy of machine learning in the diagnosis of odontogenic cysts and tumors: a systematic review and meta-analysis.

Oral Radiol

Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India.

Published: July 2024

Background: The recent impact of artificial intelligence in diagnostic services has been enormous. Machine learning tools offer an innovative alternative to diagnose cysts and tumors radiographically that pose certain challenges due to the near similar presentation, anatomical variations, and superimposition. It is crucial that the performance of these models is evaluated for their clinical applicability in diagnosing cysts and tumors.

Methods: A comprehensive literature search was carried out on eminent databases for published studies between January 2015 and December 2022. Studies utilizing machine learning models in the diagnosis of odontogenic cysts or tumors using Orthopantomograms (OPG) or Cone Beam Computed Tomographic images (CBCT) were included. QUADAS-2 tool was used for the assessment of the risk of bias and applicability concerns. Meta-analysis was performed for studies reporting sufficient performance metrics, separately for OPG and CBCT.

Results: 16 studies were included for qualitative synthesis including a total of 10,872 odontogenic cysts and tumors. The sensitivity and specificity of machine learning in diagnosing cysts and tumors through OPG were 0.83 (95% CI 0.81-0.85) and 0.82 (95% CI 0.81-0.83) respectively. Studies utilizing CBCT noted a sensitivity of 0.88 (95% CI 0.87-0.88) and specificity of 0.88 (95% CI 0.87-0.89). Highest classification accuracy was 100%, noted for Support Vector Machine classifier.

Conclusion: The results from the present review favoured machine learning models to be used as a clinical adjunct in the radiographic diagnosis of odontogenic cysts and tumors, provided they undergo robust training with a huge dataset. However, the arduous process, investment, and certain ethical concerns associated with the total dependence on technology must be taken into account. Standardized reporting of outcomes for diagnostic studies utilizing machine learning methods is recommended to ensure homogeneity in assessment criteria, facilitate comparison between different studies, and promote transparency in research findings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11282-024-00745-7DOI Listing

Publication Analysis

Top Keywords

machine learning
24
cysts tumors
24
odontogenic cysts
16
diagnosis odontogenic
12
studies utilizing
12
diagnosing cysts
8
utilizing machine
8
learning models
8
088 95%
8
cysts
7

Similar Publications

Accuracy of Radiomics in the Identification of Extrathyroidal Extension and BRAF Mutations in Papillary Thyroid Carcinoma: A Systematic Review and Meta-analysis.

Acad Radiol

January 2025

Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:

Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.

View Article and Find Full Text PDF

Predicting postoperative adhesive small bowel obstruction in infants under 3 months with intestinal malrotation: a random forest approach.

J Pediatr (Rio J)

January 2025

Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:

Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.

Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model.

View Article and Find Full Text PDF

PreTKcat: A pre-trained representation learning and machine learning framework for predicting enzyme turnover number.

Comput Biol Chem

January 2025

College of Artificial Intelligence, Tianjin University of Science and Technology, No. 9, 13th Street, Tianjin Economic-Technological Development Area, Tianjin, 300457, China. Electronic address:

The enzyme turnover number (k) is crucial for understanding enzyme kinetics and optimizing biotechnological processes. However, experimentally measured k values are limited due to the high cost and labor intensity of wet-lab measurements, necessitating robust computational methods. To address this issue, we propose PreTKcat, a framework that integrates pre-trained representation learning and machine learning to predict k values.

View Article and Find Full Text PDF

Machine learning-based identification of animal feeding operations in the United States on a parcel-scale.

Sci Total Environ

January 2025

Department of Biological and Agricultural Engineering, University of Arkansas, United States of America. Electronic address:

The increasing global demand for meat and dairy products, fueled by rapid industrialization, has led to the expansion of Animal Feeding Operations (AFOs) in the United States (US). These operations, often found in clusters, generate large amounts of manure, posing a considerable risk to water quality due to the concentrated waste streams they produce. Accurately mapping AFOs is essential for effective environmental and disease management, yet many facilities remain undocumented due to variations in federal and state regulations.

View Article and Find Full Text PDF

The long-term presence of antibiotics in the aquatic environment will affect ecology and human health. Techniques for determining antibiotics are often time-consuming, labor-intensive and costly, and it is desirable to seek new methods to achieve rapid prediction of antibiotics. Many scholars have shown the effectiveness of machine learning in water quality prediction, however, its effectiveness in predicting antibiotic concentrations in the aquatic environment remains inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!