Epicuticular wax is an example of a naturally created functional material that forms a layer on the outermost surface of plants with the objective to protect them from adverse environmental conditions, such as UV-solar radiation, uncontrolled water loss, microbial attacks, and so forth. Their functionalities are often attributed to the chemical composition of the wax as well as the physical structuration formed by the wax crystals on the surface. With this work, we present a simple, one-step biomimetic approach to replicate similar surface structures, on model substrate, using wax extracted from ( wax). First, we describe formation of structured wax due to self-assembly induced by evaporative drying on quartz plates. Subsequently, we highlight the fundamental physical parameters required to tune the surface morphology. Our experiments reveal that it is possible to achieve considerably diverse surface morphologies depending on the solvent properties and deposition temperature. This diversity is due to the kinetics of recrystallization of wax during evaporation of solvent which, in turn, is primarily driven by the solubility of wax as well as evaporation rate of the solvent. Thus, the final morphology that we obtain is an interplay between recrystallization kinetics and solvent evaporation. Additionally, the degree of crystallinity of the structured films could also be tuned by solvent polarity. Surprisingly, X-ray diffraction indicates that the crystalline structure at the molecular level remains similar to that of bulk wax. Our results provide fundamental insights into the replication of epicuticular wax films and identification of tuning parameters to obtain different surface morphologies with the same wax material for potential bioinspired multifunctional coatings in cosmetic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00205DOI Listing

Publication Analysis

Top Keywords

wax
12
epicuticular wax
12
evaporative drying
8
biomimetic approach
8
wax well
8
surface morphologies
8
surface
7
solvent
5
drying induced
4
induced self-assembly
4

Similar Publications

Oleogelation for saturated fat replacement in vegan cheese.

Food Chem

December 2024

Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Dept. of Physics, Toronto Metropolitan University, Toronto, Canada. Electronic address:

Oleogelation was investigated to reduce the saturated fat content of vegan cheese. Oleogels were formulated using a range of oleogelators, oleogelator concentrations and oil phase compositions to study the effect that adjusting these parameters had on both oleogel and vegan cheese properties. Comparing oleogels at an equivalent mass basis of 20 wt%, phytosterol oleogels exhibited greater hardness (5.

View Article and Find Full Text PDF

Role of the plum cuticle layer in influencing fruit texture and permeation during the salting process.

Food Chem

December 2024

Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:

'Tuogu' and 'Bingtang' plums display unique textural responses to salt curing, manifesting in volume reduction, surface wrinkling, and alterations in color and texture, alongside ongoing material exchange. Over a seven-day salting period, 'Tuogu' plums lost 14.9 % of their moisture, compared to 'Bingtang' plums' 24.

View Article and Find Full Text PDF

This study aimed to explore the application value of an innovative embedding and cooling component in the critical steps of fragmented tissue pathological diagnosis. Eighty small and fragmented tissue samples were collected and randomly divided into two groups. The embedding qualification rate and embedding efficiency were compared between the two groups.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Objectives: Virtual surgical planning (VSP) allows for optimal reconstruction of maxillary defects with fibula free flaps. Current data are limited regarding long-term complications of patient-specific plates (PSPs) in this setting. Our objective was to determine long-term complications of PSPs in maxillary reconstruction using fibula free flaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!