Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spin-polarized donor radicals based on tetrathiafulvalene (TTF) derivatives and nitronyl nitroxide (NN) radicals in which one-electron oxidation involves the HOMO instead of the SOMO are well known for exhibiting magnetoresistance. In particular, BTBN consists of one dibromo-TTF and one NN radical, which are linked by a phenyl coupler group. One of the key factors driving magnetoresistance is the presence of intramolecular ferromagnetic (FM) coupling between the oxidized π-donor (TTF⋅, D unit) and NN (R unit). Here, a theoretical study is carried out to assess suitable candidates with enhanced FM coupling with respect BTBN, which is thus used as a reference. The study is conducted via in silico chemical modification of the substituents of the BTBN basic functional units (D and R radicals, C coupler) to benefit from the spin polarization mechanism to boost the intramolecular FM coupling, aiming to distort the BTBN radical arrangement within the molecular crystal as little as possible, in the event the material can be synthesized. NICS(1) and Wiberg's Bond Order are analyzed to further assist in identifying promising potential candidates, since the decrease in aromaticity is expected to enhance the diradical character and give rise to a larger magnetic coupling value. The most favorable diradical building block to replace the BTBN moiety results from using a hydroxyl-ethylene (-(H)C=C(OH)-) as a coupler preserving BTBN original radicals, namely, NN and TTF⋅ units. This study aims at illustrating the feasibility of improving the intramolecular FM interaction between radical moieties, which is fully realized, as a first step towards the synthesis of new materials with (possibly) enhanced magnetoresistance properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!