Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is activated by binding to DNA. Activated cGAS produces 2'3'-cGAMP, which subsequently binds to the adaptor protein STING (stimulator of interferon genes). This interaction triggers the cGAS/STING signaling pathway, leading to the production of type I interferons. Three types of DNA, namely double-stranded DNA longer than 40 base pairs, a 70-nucleotide single-stranded HIV-1 DNA known as SL2, and Y-form DNA with unpaired guanosine trimers (G3 Y-form DNA), induce interferon production by activating cGAS/STING signaling. However, the extent of cGAS activation by each specific DNA type remains unclear. The comparison of cGAS stimulation by various DNAs is crucial for understanding the mechanisms underlying cGAS-mediated type I interferon production in the innate immune response. Here, we revealed that cGAS produces 2'3'-cGAMP at a significantly lower rate in the presence of single-stranded SL2 DNA than in the presence of double-stranded DNA or G3 Y-form DNA. Furthermore, the guanine-to-cytosine mutations and the deletion of unpaired guanosine trimers significantly reduced the 2'3'-cGAMP production rate and the binding of cGAS to Y-form DNA. These studies will provide new insights into the cGAS-mediated DNA-sensing in immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994814 | PMC |
http://dx.doi.org/10.1042/BSR20240269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!