Medical institutions continuously create a substantial amount of data that is used for scientific research. One of the departments with a great amount of archived data is the pathology department. Pathology archives hold the potential to create a case series of valuable rare entities or large cohorts of common entities. The major problem in creation of these databases is data extraction which is still commonly done manually and is highly laborious and error prone. For these reasons, we offer using large language models to overcome these challenges. Ten pathology reports of selected resection specimens were retrieved from electronic archives of Koç University Hospital for the initial set. These reports were de-identified and uploaded to ChatGPT and Google Bard. Both algorithms were asked to turn the reports in a synoptic report format that is easy to export to a data editor such as Microsoft Excel or Google Sheets. Both programs created tables with Google Bard facilitating the creation of a spreadsheet from the data automatically. In conclusion, we propose the use of AI-assisted data extraction for academic research purposes, as it may enhance efficiency and precision compared to manual data entry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129865PMC
http://dx.doi.org/10.5146/tjpath.2024.13256DOI Listing

Publication Analysis

Top Keywords

data extraction
12
large language
8
language models
8
data
8
google bard
8
models rapid
4
rapid objective
4
objective tool
4
pathology
4
tool pathology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!