Further improving the activity and selectivity of photocatalytic CO reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiPSe provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c00687DOI Listing

Publication Analysis

Top Keywords

ferroelectric polarization
16
photocatalytic reduction
12
polarization single-atom
8
synergistically promoting
8
activity selectivity
8
selectivity photocatalytic
8
ferroelectric
4
single-atom catalyst
4
catalyst synergistically
4
promoting photoreduction
4

Similar Publications

Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-FeO with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex.

View Article and Find Full Text PDF

Reinvestigating atomic ordering in KNaNbOand its impact on ferroelectric properties.

J Phys Condens Matter

January 2025

Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.

View Article and Find Full Text PDF

Stacking ferroelectricity in two-dimensional van der Waals materials.

J Phys Condens Matter

January 2025

Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Rd, Xili, Nanshan District, Shenzhen, 518055, CHINA.

Miniaturization of ferroelectrics for technological applications has proven challenging due to the suppression of electric polarization caused by increasing depolarization fields as material thickness decreases. The emergence of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials offers a potential solution to this challenge, prompting significant research efforts over the past decade. While intrinsic 2D vdW ferroelectrics are scarce, polar stacking provides a more general approach to introducing ferroelectricity in these materials.

View Article and Find Full Text PDF

Emergence of ferroelectricity in Sn-based perovskite semiconductor films by iminazole molecular reconfiguration.

Nat Commun

January 2025

State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.

Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.

View Article and Find Full Text PDF

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!