Tailored Yolk-Shell Design to Silicon Microparticles via Scalable and Template-Free Synthesis for Superior Lithium Storage.

Small

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Published: September 2024

Micrometer-sized Si particles are beneficial to practical lithium-ion batteries in regard to low cost and high volumetric energy density in comparison with nanostructured Si anodes. However, both the issues of electrical contact loss and overgrowth of solid electrolyte interface for microscale Si induced by colossal volume change still remain to be addressed. Herein, a scalable and template-free method is introduced to fabricate yolk-shell structured Si anode from commercially available Si microparticles. The void is created via a one-step alkali etching process with the remaining silicon core as the yolk, and a double-walled shell is formed from simultaneous in situ growth of the conformal native oxide layer and subsequent carbon coating. In this configuration, the well-defined void spaces allow the Si core to expand without compromising structural integrity, while the double-walled shell acts as a static capsule to confine silicon fragments despite likely particle fracture. Therefore, electrical connectivity is maintained on both the particle and electrode level during deep galvanostatic cycling, and the solid-electrolyte interface is stabilized on the shell surface. Owing to the benefits of tailored design, excellent cycling stability (capacity retention of 95% after 100 cycles) and high coulombic efficiency (99.5%) are realized in a practical full-cell demonstration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202311779DOI Listing

Publication Analysis

Top Keywords

scalable template-free
8
double-walled shell
8
tailored yolk-shell
4
yolk-shell design
4
design silicon
4
silicon microparticles
4
microparticles scalable
4
template-free synthesis
4
synthesis superior
4
superior lithium
4

Similar Publications

Transformer-based, template-free SMILES-to-SMILES translation models for reaction prediction and single-step retrosynthesis are of interest to computer-aided synthesis planning systems, as they offer state-of-the-art accuracy. However, their slow inference speed limits their practical utility in such applications. To address this challenge, we propose speculative decoding with a simple chemically specific drafting strategy and apply it to the Molecular Transformer, an encoder-decoder transformer for conditional SMILES generation.

View Article and Find Full Text PDF

Inferring appropriate synthesis reaction (i.e., retrosynthesis) routes for newly designed molecules is vital.

View Article and Find Full Text PDF

Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.

View Article and Find Full Text PDF

Tailored Yolk-Shell Design to Silicon Microparticles via Scalable and Template-Free Synthesis for Superior Lithium Storage.

Small

September 2024

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Micrometer-sized Si particles are beneficial to practical lithium-ion batteries in regard to low cost and high volumetric energy density in comparison with nanostructured Si anodes. However, both the issues of electrical contact loss and overgrowth of solid electrolyte interface for microscale Si induced by colossal volume change still remain to be addressed. Herein, a scalable and template-free method is introduced to fabricate yolk-shell structured Si anode from commercially available Si microparticles.

View Article and Find Full Text PDF

Sequence-defined oligomers (SDOs) with their unique monomeric sequence and customizable nature are attracting the attention of researchers globally. The structural and functional diversity attainable in SDOs makes this platform promising, albeit with challenges in the synthesis. Herein, we report the design and synthesis of a novel class of SDO by incorporating tertiary amines into the backbone from commercially available inexpensive materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!