AI Article Synopsis

  • Metallic Zn is a potentially excellent anode material due to its availability, sustainability, and high theoretical energy capacity, but its practical use is hindered by issues like dendrite growth and unwanted side reactions.
  • The introduction of a β-cyclodextrin-modified multiwalled carbon nanotube layer significantly improves the performance of Zn anodes by enhancing Zn transfer and promoting more consistent deposition while reducing side reactions.
  • The modified Zn anode demonstrates remarkable cycling durability, lasting over 1000 hours at a high current density, indicating significant potential for developing high-performance batteries utilizing Zn as an anode material.

Article Abstract

Metallic Zn is considered as a promising anode material because of its abundance, eco-friendliness, and high theoretical capacity. However, the uncontrolled dendrite growth and side reactions restrict its further practical application. Herein, we proposed a β-cyclodextrin-modified multiwalled carbon nanotube (CD-MWCNT) layer for Zn metal anodes. The obtained CD-MWCNT layer with high affinity to Zn can significantly reduce the transfer barrier of Zn at the electrode/electrolyte interface, facilitating the uniform deposition of Zn and suppressing water-caused side reactions. Consequently, the Zn||Zn symmetric cell assembled with CD-MWCNT shows a significantly enhanced cycling durability, maintaining a cycling life exceeding 1000 h even under a high current density of 5 mA cm. Furthermore, the full battery equipped with a VO cathode displays an unparalleled long life. This work unveils a promising avenue toward the achievement of high-performance Zn metal anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00016DOI Listing

Publication Analysis

Top Keywords

carbon nanotube
8
side reactions
8
cd-mwcnt layer
8
metal anodes
8
mediating ions
4
ions migration
4
migration behavior
4
behavior β-cyclodextrin
4
β-cyclodextrin modified
4
modified carbon
4

Similar Publications

High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans.

Anal Chem

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.

View Article and Find Full Text PDF

The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.

View Article and Find Full Text PDF

To protect against harmful electromagnetic interference (EMI), it is crucial to fabricate composite with high total electromagnetic shielding efficiency (SE); In this study, FeNi-NiFeO-SiO nanoparticles (NPs) were synthesized using one-pot method and decorated on carbon nanotube's (CNT) sidewall. The final product was magnetic-ceramic/conductive (FeNi-NiFeO-SiO/MWCNT) nanocomposite. The EMI shielding characteristic of FeNi-NiFeO-SiO NPs and FeNi-NiFeO-SiO/MWCNT nanocomposite was investigated in the range of X and Ku frequency band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!