AI Article Synopsis

  • * Recent studies indicate that the photocatalytic breakdown of NFA molecules at metal oxide electron transport layer (ETL) interfaces is a key factor in device degradation.
  • * This research shows that using sputtered titanium oxide layers as ETLs can notably improve the longevity of NFA-based OPVs by reducing defect states and photocatalytic degradation, achieving around 10% efficiency and enhanced stability in a scalable manner.

Article Abstract

Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00056DOI Listing

Publication Analysis

Top Keywords

photocatalytic decomposition
12
nonfullerene acceptor
12
defect states
8
sputtered titanium
8
titanium oxide
8
oxide electron
8
electron transport
8
organic photovoltaics
8
power conversion
8
decomposition nonfullerene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!