An Injectable Magnesium-Based Cement Stimulated with NIR for Drug-Controlled Release and Osteogenic Potential.

Adv Healthc Mater

School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.

Published: July 2024

Magnesium phosphate bone cement (MPC) has gained widespread usage in orthopedic implantation due to its fast-setting and high initial strength benefits. However, the simultaneous attainment of drug-controlled release and osteogenic potential in MPC remains a significant challenge. Herein, a strategy to create a smart injectable cement system using nanocontainers and chondroitin sulfate is proposed. It employs nanocontainers containing alendronate-loaded mesoporous silica nanoparticles, which are surface-modified with polypyrrole to control drug release in response to near-infrared (NIR) stimulation. The alendronate-incorporated cement (ACMPC) exhibits improved compressive strength (70.6 ± 5.9 MPa), prolonged setting time (913 s), and exceptional injectability (96.5% of injection rate and 242 s of injection time). It also shows the capability to prevent degradation, thus preserving mechanical properties. Under NIR irradiation, the cement shows good antibacterial properties due to the combined impact of hyperthermia, reactive oxygen species, and alendronate. Furthermore, the ACMPC (NIR) group displays good biocompatibility and osteogenesis capabilities, which also lead to an increase in alkaline phosphatase activity, extracellular matrix mineralization, and the upregulation of osteogenic genes. This research has significant implications for developing multifunctional biomaterials and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400207DOI Listing

Publication Analysis

Top Keywords

drug-controlled release
8
release osteogenic
8
osteogenic potential
8
cement
5
injectable magnesium-based
4
magnesium-based cement
4
cement stimulated
4
nir
4
stimulated nir
4
nir drug-controlled
4

Similar Publications

Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy.

ChemMedChem

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China.

Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities.

View Article and Find Full Text PDF

Photopolymerizable robust lipids towards reliability and their applications.

Biophys Rev

December 2024

Laboratorio de BioNanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.

Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted.

View Article and Find Full Text PDF

A stimuli-responsive drug delivery system based on konjac glucomannan, carboxymethyl chitosan and mesoporous polydopamine nanoparticles.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation.

View Article and Find Full Text PDF

Osteomyelitis with a high recurrence rate. Timely-prevention can avoid severe consequence and death. However, conventional drug response-release has the disadvantages of unnecessary release and waste, causing ineffective prevention.

View Article and Find Full Text PDF

Self-healing hyaluronic acid/polylysine hydrogel prepared by dual-click chemistry from polyrotaxane slidable crosslinkers.

J Colloid Interface Sci

February 2025

The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.

A new type of pH-sensitive hydrogel containing supramolecular structures was fabricated from maleimide-functionalized polyrotaxane, ɛ-polylysine and furan-functionalized hyaluronic acid by Diels-Alder reaction and amino-maleimide reaction. Firstly, pseudo polyrotaxane was obtained through self-assembly of polyethylene glycol and α-cyclodextrin, and then capped with 1-adamantanecarboxylic acid to convert it into polyrotaxane. Secondly, a maleimide-functionalized slidable crosslinker was obtained by modifying the polyrotaxane with 3-maleimide propionic acid, and furan-functionalized hyaluronic acid was prepared by modifying it with 2-furanmethylamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!