One-pot Synthesis of PdCuAg and CeO Nanowires Hybrid with Abundant Heterojunction Interface for Ethylene Glycol Electrooxidation.

Chemistry

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.

Published: May 2024

Introducing CeO into Pd-based nanocatalysts for electrocatalytic reactions is a good way to solve the intermediate toxicity problem and improve the catalytic performance. Here we reported a simple strategy to synthesize the PdCuAg and CeO nanowires hybrid via a one-pot synthesis process under strong nanoconfined effect of specific surfactant as templates. Owing to the structural (ultrathin nanowires, abundant heterojunction/interfaces between metal and metal oxide) and compositional (Pd, Cu, Ag, CeO) advantages, the hybrid showed significantly enhanced catalytic activity (6.06 A mg ) and stability, accelerated reaction rate, and reduced activation energy toward electrocatalytic ethylene glycol oxidation reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400944DOI Listing

Publication Analysis

Top Keywords

one-pot synthesis
8
pdcuag ceo
8
ceo nanowires
8
nanowires hybrid
8
ethylene glycol
8
synthesis pdcuag
4
ceo
4
hybrid abundant
4
abundant heterojunction
4
heterojunction interface
4

Similar Publications

Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo.

View Article and Find Full Text PDF

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

A practical, biomimetic, one-pot synthesis of firefly luciferin.

Sci Rep

December 2024

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.

The bioluminescence reaction of firefly luciferase with D-luciferin has become an indispensable imaging technique in modern biology and life science experiments, but the high cost of D-luciferin is limiting its further application. Here, we report a practical, one-pot synthesis of D-luciferin from p-benzoquinone (p-BQ), L-cysteine methyl ester and D-cysteine, with an overall yield of 46%. Our route, which is six steps in length and proceeds via 2-cyano-6-hydroxybenzothiazole, is inspired by the mechanistic study of our previously reported biomimetic, non-enzymatic, one-pot formation of L-luciferin from p-BQ and L-cysteine.

View Article and Find Full Text PDF

Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped CuS (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions.

View Article and Find Full Text PDF

Heterocoupling Two Similar Benzyl Radicals by Dual Photoredox/Cobalt Catalysis.

Angew Chem Int Ed Engl

December 2024

Zhengzhou University, College of Chemistry, and Pingyuan Laboratory, CHINA.

Transition-metal-regulated radical cross coupling enables the selective bonding of two distinct transient radicals, whereas the catalytic method for sorting two almost identical transient radicals, especially similar benzyl radicals, is still rare. Herein, we show that leveraging dual photoredox/cobalt catalysis can selectively couple two similar benzyl radicals. Using easily accessible methylarenes and phenylacetates (benzyl N-hydroxyphthalimide (NHPI) esters) as benzyl radical sources, a range of unsymmetrical 1,2-diarylethane classes via the 1°-1°, 1°-2°, 1°-3°, 2°-2°, 2°-3° and 3°-3° couplings were obtained with broad functional group tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!