Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions. In this study, direct-write, near-field electrospinning of gelatin solution was implemented to fabricate micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. The stiffness of these fibrous scaffolds was found to be controllable between 1 MPa and 8 MPa using different crosslinking methods (EDC, DHT, DHT+EDC) or through altering the duration of crosslinking with EDC (1 h to 24 h). EDC crosslinking provided the greatest fiber stability, surviving up to 3 weeks in vitro. Differences in stiffness resulted in phenotypic changes for equine tenocytes with low stiffness fibers (∼1 MPa) promoting an elongated nuclear aspect ratio while those on high stiffness fibers (∼8 MPa) were rounded. High stiffness fibers resulted in the upregulation of matrix metalloproteinase (MMPs) and proteoglycans (possible indicators for tendinopathy) relative to low stiffness fibers. These results demonstrate the feasibility of direct-written gelatin scaffolds as tendon in vitro models and provide evidence that matrix mechanical properties may be crucial factors in cell-matrix interactions during tendinopathy formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080953 | PMC |
http://dx.doi.org/10.1115/1.4065163 | DOI Listing |
Adv Healthc Mater
December 2024
Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.
View Article and Find Full Text PDFBackground: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland.
This study investigates the effect of fibers from cotton and polyester textiles on the properties of fiber-reinforced polypropylene (PP) composites aimed at durable and load-bearing materials. Herein we developed a process-centered strategy to introduce 52 wt% of fibers within the thermoplastic matrix, while ensuring proper interfacial coupling. We examined the mechanical, thermal, and rheological properties of composite materials that integrated cotton and polyester waste fibers into PP matrices with different coupling agents.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!