Solar power tower technology has strong potential among the other concentration solar power techniques for large power generation. Therefore, it is necessary to make a new and efficient power conversion system for utilizing the solar power tower system. In present research, a novel combined cycle is proposed to generate power for the application of the solar power tower. The pre-compression configuration of the Brayton cycle is used as a topping cycle in which helium is taken as the working fluid. The transcritical CO cycle is used as bottoming cycle for using the waste heat. The proposed system is investigated based on exergy, energy, and exergoenvironmental point of view using computational technique engineering equation solver. Also, the parametric analysis is carried out to check the impact of the different variables on the system performance. It is concluded that the overall plant's optimized thermal and exergy efficiencies are obtained as 31.59% and 33.12%, respectively, at 800 °C optimum temperature of combined cycle and 850 W m of direct normal irradiation and 2.278 of compressor pressure ratio. However, exergetic stability factor and exergoenvironmental impact index are observed as 0.5952 and 0.6801 respectively. The present proposed system performs better than the previous studies with fewer components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962476PMC
http://dx.doi.org/10.1002/gch2.202300223DOI Listing

Publication Analysis

Top Keywords

solar power
16
power tower
12
power generation
8
combined cycle
8
proposed system
8
power
7
cycle
6
system
5
sustainable power
4
generation solar-driven
4

Similar Publications

The Effect of Antisolvent Treatment on the Growth of 2D/3D Tin Perovskite Films for Solar Cells.

ACS Energy Lett

January 2025

Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.

Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.

View Article and Find Full Text PDF

Sulfur Vacancies Limit the Open-Circuit Voltage of SbS Solar Cells.

ACS Energy Lett

January 2025

Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.

View Article and Find Full Text PDF

Mitigation of Self-p-Doping and Off-Centering Effect in Tin Perovskite via Strontium Doping.

ACS Energy Lett

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Installing photovoltaic systems (PVs) on building rooftops is a viable and sustainable alternative to meet the growing demand for electricity in cities. This work develops a methodology that uses LiDAR (laser imaging detection and ranging) technology and roof footprints to obtain a three-dimensional representation of the rooftops in the urban centre of Santa Isabel (Azuay, Ecuador). This allowed the determination of characteristics such as area, slope, orientation, and received solar radiation, making it possible to calculate the rooftop's theoretical, technical, and economic photovoltaic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!