Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level.
Methods/materials: Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry.
Results: The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected.
Conclusion: In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dom.15553 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!