The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of mer one-hot, mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968306 | PMC |
http://dx.doi.org/10.1080/15476286.2024.2329451 | DOI Listing |
Disabil Rehabil Assist Technol
January 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Assistive technology (AT) professionals are in pressing need with nowadays growing aged/disabled population, so as well-designed higher education programs in this field. This study designed and implemented a case-based active learning approach within an undergraduate course related to AT in Hong Kong, and assessed its impact on enhancing student engagement over two academic years. A total of twelve multimedia patient case dossiers on six major physical disabilities were created.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Huashan Hospital and Human Phenome Institute, Fudan University, 220 Handan Road, Shanghai, 200433, China.
Objective: This study aims to conduct a bibliometric analysis to explore research trends, collaboration patterns, and emerging themes in the PET/MR field based on published literature from 2010 to 2024.
Methods: A detailed literature search was performed using the Web of Science Core Collection (WoSCC) database with keywords related to PET/MR. A total of 4,349 publications were retrieved and analyzed using various bibliometric tools, including VOSviewer and CiteSpace.
Nano Lett
January 2025
Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 11-19, Kiel 24098, Germany.
Topological plasmonics combines principles of topology and plasmonics to provide new methods for controlling light, analogous to topological edge states in photonics. However, designing such topological states remains challenging due to the complexity of the high-dimensional design space. We present a novel method that uses supervised, physics-informed deep learning and surrogate modeling to design topological devices for desired wavelengths.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea.
Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!