Engineering RNA polymerase to construct biotechnological host strains of cyanobacteria.

Physiol Plant

Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland.

Published: March 2024

Application of cyanobacteria for bioproduction, bioremediation and biotransformation is being increasingly explored. Photoautotrophs are carbon-negative by default, offering a direct pathway to reducing emissions in production systems. More robust and versatile host strains are needed for constructing production strains that would function as efficient and carbon-neutral cyanofactories. We have tested if the engineering of sigma factors, regulatory units of the bacterial RNA polymerase, could be used to generate better host strains of the model cyanobacterium Synechocystis sp. PCC 6803. Overexpressing the stress-responsive sigB gene under the strong psbA2 promoter (SigB-oe) led to improved tolerance against heat, oxidative stress and toxic end-products. By targeting transcription initiation in the SigB-oe strain, we could simultaneously activate a wide spectrum of cellular protective mechanisms, including carotenoids, the HspA heat shock protein, and highly activated non-photochemical quenching. Yellow fluorescent protein was used to test the capacity of the SigB-oe strain to produce heterologous proteins. In standard conditions, the SigB-oe strain reached a similar production as the control strain, but when cultures were challenged with oxidative stress, the production capacity of SigB-oe surpassed the control strain. We also tested the production of growth-rate-controlled host strains via manipulation of RNA polymerase, but post-transcriptional regulation prevented excessive overexpression of the primary sigma factor SigA, and overproduction of the growth-restricting SigC factor was lethal. Thus, more research is needed before cyanobacteria growth can be manipulated by engineering RNA polymerase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14263DOI Listing

Publication Analysis

Top Keywords

rna polymerase
16
host strains
16
sigb-oe strain
12
engineering rna
8
oxidative stress
8
capacity sigb-oe
8
control strain
8
strains
5
production
5
sigb-oe
5

Similar Publications

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

Background: Chronic active Epstein-Barr virus (CAEBV) infection is a rare disease in which the Epstein-Barr virus (EBV) persists and replicates, causing chronic symptoms and fatal complications. The treatment of CAEBV is still evolving. Our case report showed a new therapy for CAEBV.

View Article and Find Full Text PDF

Inhibition of chondroitin sulphate-degrading enzyme Chondroitinase ABC by dextran sulphate.

Glycoconj J

January 2025

School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.

Chondroitin sulphate (CS) is a sulphated glycosaminoglycan (GAG) polysaccharide found on proteoglycans (CSPGs) in extracellular and pericellular matrices. Chondroitinase ABC (CSase ABC) derived from Proteus vulgaris is an enzyme that has gained attention for the capacity to cleave chondroitin sulphate (CS) glycosaminoglycans (GAG) from various proteoglycans such as Aggrecan, Neurocan, Decorin etc. The substrate specificity of CSase ABC is well-known for targeting various structural motifs of CS chains and has gained popularity in the field of neuro-regeneration by selective degradation of CS GAG chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!