Equine influenza (EI) is a highly contagious acute respiratory disease of equines caused by the H3N8 subtype of Influenza A virus i.e. equine influenza virus (EIV). Vaccination is an important and effective tool for the control of EI in equines. Most of the commercial influenza vaccines are produced in embryonated hen's eggs which has several inherent disadvantages. Hence, subunit vaccine based on recombinant haemagglutinin (HA) antigen, being the most important envelope glycoprotein has been extensively exploited for generating protective immune responses, against influenza A and B viruses. We hypothesized that novel vaccine formulation using baculovirus expressed recombinant HA1 (rHA1) protein coupled with bacteriophage will generate strong protective immune response against EIV. In the present study, the recombinant HA1 protein was produced in insect cells using recombinant baculovirus having cloned HA gene of EIV (Florida clade 2 sublineage) and the purified rHA1 was chemically coupled with bacteriophage using a crosslinker to produce rHA1-phage vaccine candidate. The protective efficacy of vaccine preparations of rHA1-phage conjugate and only rHA1 proteins were evaluated in mouse model through assessing serology, cytokine profiling, clinical signs, gross and histopathological changes, immunohistochemistry, and virus quantification. Immunization of vaccine preparations have stimulated moderate antibody response (ELISA titres-5760 ± 640 and 11,520 ± 1280 for rHA1 and rHA1-phage, respectively at 42 dpi) and elicited strong interferon (IFN)-γ expression levels after three immunizations of vaccine candidates. The immunized BALB/c mice were protected against challenge with wild EIV and resulted in reduced clinical signs and body weight loss, reduced pathological changes, decreased EIV antigen distribution, and restricted EIV replication in lungs and nasopharynx. In conclusion, the immune responses with moderate antibody titer and significantly higher cytokine responses generated by the rHA1-phage vaccine preparation without any adjuvant could be a novel vaccine candidate for quick vaccine preparation through further trials of vaccine in the natural host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-024-10356-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!