Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-024-00859-yDOI Listing

Publication Analysis

Top Keywords

genomic inbreeding
16
signatures selection
16
commercial brangus
12
roh islands
12
signatures commercial
8
brangus herd
8
composite breeds
8
identify signatures
8
qtl enrichment
8
enrichment analysis
8

Similar Publications

The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum.

Nat Genet

January 2025

Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb).

View Article and Find Full Text PDF

Neuromuscular diseases (NMD) are a group of neurological diseases that manifest with various clinical symptoms affecting different components of the peripheral nervous system, which play a role in voluntary body movements control. The primary objective of this study is to explore the diagnostic efficacy of a combined genetic and biochemical testing approach for patients with neuromuscular diseases with diverse presentations in a population with high rate of consanguinity. Genetic testing was performed using selected Next Generation Sequencing (NGS) gene panels and whole exome sequencing on the peripheral blood sample from the patients.

View Article and Find Full Text PDF

Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.

View Article and Find Full Text PDF

High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution.

View Article and Find Full Text PDF

Background: Methylmalonic acidemia (MMA), type mut (0) is a rare type of genetic inborn error of metabolism (IEM) that is caused by aberrant malonyl-CoA mutase activity. Diagnosing IEM can be challenging due to its inherited onset and varying degrees of severity.

Methods And Results: In the present study, a consanguineous Pakistani family suspected of IEM was genetically analyzed using whole exome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!