Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41580-024-00722-2 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sichuan University, College of Biomass Science and Engineering, College of Biomass Science and Engineering, Healthy Food Evaluation Research Cen, 610065, Chengdu, CHINA.
RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.
Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia.
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA.
Background: Predictive biomarkers for immune checkpoint inhibitors (ICIs), e.g., programmed death ligand-1 (PD-L1) tumor proportional score (TPS), remain limited in clinical applications.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant-Fusarium Interactions Research Team, School of BioSciences, University of Melbourne, Parkville, Australia.
Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!